WITSML v2.0 Release Candidate Overview

Jay Hollingsworth сто

of Energy

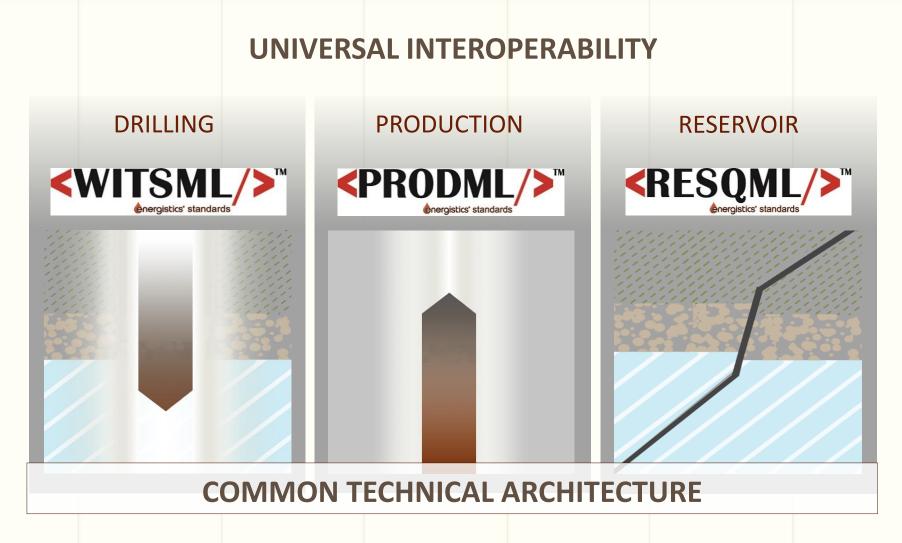
This morning:

- » Energistics
- » WITSML
- » Standards v2.0
- » WITSML 2.0
 - Data objects
 - API (ETP)
- » Release Candidate contents

Who are we? (Hint: we are not a vendor...)

- » Energistics is a global, non-profit, membership consortium focused on developing open data exchange standards in the upstream oil and gas industry. We have served the industry for more than 25 years.
- » Our membership consists of E&P companies, oilfield service companies, software vendors, system integrators, regulatory agencies and the global standards community
- » Our standards are developed by workgroups (known as Special Interest Groups, or SIGs) made up of industry experts from our member companies
- » In short, the standards are created by the industry for the industry

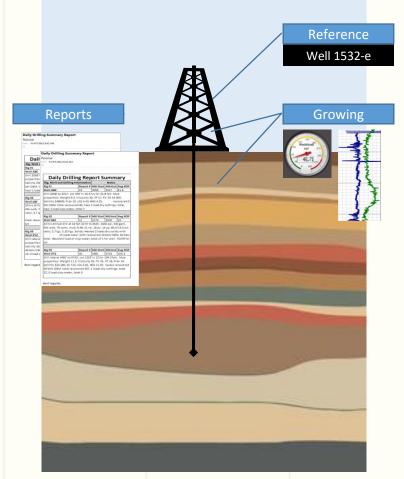
World-wide



4

Industry-Wide

Energistics Family of Standards



Version 1.X Use Cases

- » Consistent high-quality transfer of wellbore and drilling-related data
 - Data transfer to real-time operations centers
 - Reference objects Well and Wellbore
 - Growing objects Log (time, depth), Trajectory, Mudlog
 - Snapshots in time with "report" information
 - Move well-related data between applications
 - Real-time availability of drilling operations

WITSML V1.4.1 Overview

- » Set of schemas defining 27 primary objects
 - Well, wellbore, logs, etc. used in drilling operations
 - Enumerations file (enumValues.xml)
- » API defining server (and client) behavior
 - Simple methods (AddToStore, GetFromStore)

New Requirements on Transfer Standards

- » Big data/analytics
 - Analytics on data in motion
- » High-performance transfer standards
- » Broader workflows not just wellsite to office
 - Application to application
 - File-based transfers
 - Archival workflows
 - Expanded metadata

How Are Standards v2.0 Better

- » Integrated
- » Programmer oriented
- » New workflow support
- » Training available
- » New underlying technology

Integrated

- » Among the MLs
- » Between the standards bodies
 - SEGY/SEGD in epc
 - HDF use
 - OGC in MLs
 - IEP/ISO 19115
 - MathML coming

Programmer Oriented

- » More convenient XML style
- » Better documented
- » Open source code
- » Devkits

New Workflow Support

- » Server and serverless
- » Data management workflows
 - Data quality/assurance
 - Archival workflows
 - Data heritage
 - Metadata

Training

- » Training first conducted in 2015
 - Three private classes already delivered/scheduled
- » Up to a 3-day class on each ML
 - WITSML public class earlier this year
 - Further public classes to be scheduled
- » Webinars

14

WITSML v2.0

- » Continues to provide XML "data objects"
- » Is based on the Common Technical Architecture
- » Deprecates the legacy SOAP API, replaced by ETP v.1.1+
- » Has a simplified XML schema structure & fewer files
- » Data object documentation

What Can v2.0 Do I Couldn't Do Before?

- » True, secure, low-latency data streaming
- » Data quality assurance
- » Wellbore Geology, Stimulation and Cementing design and execution
- » Unlimited types and organizations of channel data
- » Tracing through multiple generations of aggregating servers
- » Elimination of polling traffic

WITSML 1.4.1 Data Objects

- » attachment
- » bhaRun
- » cementJob
- » changeLog
- » convCore
- » coordinateRefSystem »
- » drillReport
- » fluidsReport
- » formationMarker

- » log
- » message
- » mudLog
- » objectGroup
- » opsReport
- » rig » risk
 - » sidewallCore
 - » stimJob

- » surveyProgram
- » target
- » toolErrorModel
- » toolErrorTermSet
- » trajectory
- » tubular
- » wbGeometry
- » well
- » wellbore

WITSML 1.4.1 Data Objects vs 2.0

- » attachment
- » bhaRun
- » cementJob
- » changeLog
- » convCore
- » coordinateRefSystem »
- » drillReport
- » fluidsReport
- » formationMarker

» log

- » message
- » mudLog
- » objectGroup
- » opsReport
- n » rig
 - » risk
 - » sidewallCore
 - » stimJob

- » surveyProgram
- » target
- » toolErrorModel
- » toolErrorTermSet
- » trajectory
- » tubular
- » wbGeometry
- » well
- » wellbore

© 2016 Energistics

Removed – Moved to Common – Completely Redesigned – Largely unchanged

WITSML 2.0 Data Objects

- » Attachment
- » BhaRun
- » CementJob
- » CementJobEvaluation »
- » Channel
- » ChannelSet
- » CuttingsGeology
- » DepthRegImage
- » DrillReport
- » FluidsReport

- » InterpretedGeology
- » Log
- » OpsReport
- » Rig
- » Risk
- » ShowEvaluation
- » StimJob
- » StimJobStage
- » ToolErrorModel
- » ToolErrorTermSet

- » Trajectory
- » TrajectoryStation
- » Tubular
- » Well
- » Wellbore
- » WellboreGeology
- » WellboreGeometry
- » WellboreMarker
- » WellboreMarkerSet

Data Objects:

- » New naming style Pascal style
- » Focus on better attribute names
- » More documentation for each element
- » Substitution groups are just for the Aggregate object
- » More use of inheritance

Data Objects: Simpler Structure

- » There are two kinds of schema file structures
 - The obj_ schema file has a single global element
 - This is an individually addressable "top-level" element
 - Top-level elements inherit from AbstractObject
 - The other named .xsd files only contain types
- » The earlier structure is deprecated
 - No plural root, no docInfo
 - No repetition of inherited elements

Data Objects: Fewer Files example

- » Before: 200 files in schema folder
- » WITSML 2.0 will have
 - ~27 top level objects
 - 1 common base across all MLs
 - fewer component elements
- » Top level "obj_" files stay
- » Component "cs_" naming goes
- » Global equipt "ges_" naming goes
- » Group file "grp_" naming goes
- » Add one xsd file per UML package

Name
s_wellTestValidationOperation.xsd
📾 cs_wellTestWellheadData.xsd
📾 cs_wftCurveSection.xsd
🐻 cs_wftEvent.xsd
📾 cs_wftInOutParameter.xsd
G cs_wftResultRef.xsd
cs_wftSampleAcquisition.xsd
📾 cs_wftStation.xsd
cs wftTest.xsd
😡 cs_wftTestData.xsd
cs_wftTestResult.xsd
😡 ges_dtsFiber.xsd
📾 ges_dtsInstrumentBox.xsd
📾 grp_commonPropertiesProductVolume.xsd
📾 grp_dtsInstalledSystem.xsd
📾 grp_dtsInstrumentBox.xsd
📾 grp_dtsMeasurement.xsd
📾 grp_fiberOpticalPath.xsd
📾 grp_fluidAnalysis.xsd
📾 grp_fluidAnalysisResult.xsd

Data Objects: Common

- » One file for each typ_ style
- » Base types "abstractString"
- » Enum types "well fluid"
- » Data types "timestamp"
 - Old everything ML-defined
 - New xs types used
- » Measure types "angle Measure"
- » Quantity classes length in "m"
 - Old different types per ML
 - New common across all MLs
- » Shared schemas CRS, root

📷 sub_objectiviemberProami.xsa yp_baseType.xsd typ_baseTypeProdml.xsd typ_catalog.xsd typ_catalogProdml.xsd ᡖ typ_dataTypes.xsd typ_dataTypesProdml.xsd gg typ_measureType.xsd typ_measureTypeProdml.xsd typ_quantityClass.xsd typ_quantityClassProdml.xsd

New Underlying Technology - CTA

- » ETP
- » UML->XML (->JSON?)
- » EPC/OPC & Breaking XML
- » UoMs
- » PWLS
- » HDF
- » EIP

UML: Unified Modeling Language

- » Energistics uses UML to generate XML schemas
 - and other artifacts including documentation
- » UML is an OMG specification, the latest is 2.4.1 at

o <u>http://www.omg.org/spec/UML/2.4.1/</u>

- » Enterprise Architect currently supports UML 2.4.1
- » Energistics uses and delivers class diagrams
 - Other UML diagram types may or may not be used

Use of XML

- » What Energistics' members have always used
- » Energistics standards use XML v 1.0, not 1.1
- » XML is W3C recommendation latest ed. of v 1.0 is

o http://www.w3.org/TR/2008/REC-xml-20081126/

- » Energistics does not require other XML standards
 - Like XPath, XQuery, XLink, etc.
 - Simplicity aids in uptake

ETP: Energistics Transfer Protocol

- » ETP is a new data exchange specification
- » Enables real-time data transfer between applications
- » Is delivered as a specification and as sample code
- » Works by sending pre-defined messages
 - The messages are grouped together into "protocols"
 - The description of these protocols make up the standard
- » No server required, just sender and receiver

ETP: Use Across Energistics MLs

- » ETP was developed initially for WITSML[™]
 - Since WITSML is not a truly real-time transfer
- » The other MLs will use it as well
- » ETP can be used
 - For any kind of data transfer
 - From the field to the office
 - Between applications in the office
 - For any sensor-based M2M application (IIoT)

ETP: Protocols

ETP currently consists of eight child protocols:

0: Core

- 1: ChannelStreaming
- 2: ChannelDataFrame
- 3: Discovery
- 4: Store
- 5: StoreNotification
- 6: GrowingObject
- 7: DataArray

ETP: Protocols

ETP currently consists of eight child protocols:

- 0: Core Creates and manages ETP sessions
- 1: ChannelStreaming Exchanges channel-oriented data
- 2: ChannelDataFrame Exchanges frame-based data
- 3: Discovery Understand the contents of a data store
- 4: Store Perform CRUD operations on data in a store
- 5: StoreNotification Receive notification of data changes
- 6: GrowingObject Manage growing parts of data objects
- 7: DataArray Transfer large, binary arrays

ETP: WebSocket

- » ETP is itself a sub-protocol of WebSocket
- » ETP uses web ports to reduce connectivity problems
- » The messages are payload data in Websocket frames
- » Messages can travel in both directions
 - Used for discovery and later for query

ETP: Avro

- » ETP uses a subset of the Avro 1.7.5 functionality
 - ETP defines all messages using the Avro schema file format
 - The Avro schemas are managed in and produced from UML by EA
 - All messages on the wire are serialized per the Avro rules
 - ETP uses Avro additional schema attributes
 - ETP does not use Avro RPC and container file facilities
- » ETP supports Avro use of both binary and JSON data

ETP: JSON

- » The Avro schemas are created in JSON for Avro use
- » ETP also supports JSON encoding of data via Avro

ETP: git

- » ETP is issued as a formal specification
- » For developers, IT artifacts are also available via git
- » git is a widely-used version control system
 - The commercial version used for ETP is Bitucket
- » The Bitbucket repository also holds the documents
- » The IT artifacts are UML and Avro schemas in JSON
- » Source code in several languages is also available

ETP: Distribution Methods

- » The availability of source depends on the language
 - C# code is delivered as a nuget package
 - Javascript (node.js) is distributed via mpm
 - Java and C++ are in the Energistics Bitbucket repository
- » Source could include a full sample implementation
 - Or might only contain proxy classes
- » All code is contributed and maintained by members

WITSML v2.0 RC contents

- » XML schemas the standard
- » XSLT transforms
 - From both WITSML 1.3.1 and WITSML 1.4.1.1
- » Sample XML files
 - Additional files available soon from Statoil/Kongsberg
- » Documentation
 - Improving as the review period continues
- » Feedback Form in zip file
 - Comments due June 30

energistics®

Wrap Up ANY QUESTIONS?

2

of Energy Sta

© 2016 Energistics