WITSML Project

Functional Requirements v1.06 – 5 Feb 2001

21
Project Team & Revision History

2
Overview
2
2.1
Project Deliverables
2
2.2
Project Goals
3
3
Use Cases
3
3.1
Real Time Feed to Operators’ Data Bases
3
3.2
Real Time Data Exchange Between Suppliers
3
3.3
End User Accesses File of WITSML Data
3
3.4
End User Accesses WITSML Data File(s) on Web Server Hosting Willow Fork Data
3
3.5
User gets Real-Time Updates of Data from Rig
3
3.6
Software Program Accesses WITSML Server using API
4
3.7
Software Program Reads and Writes WITSML Data File
4
3.8
Examples of Use Cases
4
4
Functional Requirements
5
4.1
Transfer of data between different software systems
5
4.2
Standard definitions of oilfield data objects
6
4.2.1
WITS Background
7
4.3
Standard data modeling techniques
7
4.4
Data Schema and Objects Must Be Extensible
8
4.5
Transfer Data in Real-Time or non Real-Time
8
4.6
Service Levels
8
4.7
Ease of Implementation
8
5
Constraints
8
5.1
Software Constraints
8
5.2
Hardware Constraints
9
5.3
Performance Constraints
9
5.4
Project Timing Constraints
9
6
Suggestions
9
7
Appendix A - Standard Data Objects (Examples)
9
7.1
Data Objects
10
8
Appendix B – Suggestions for the Applications Programming Interface (API)
11
9
Appendix C – Catalogs (Examples)
12

1 Project Team & Revision History

The following team members have been involved in the production of this Functional Requirements Document:

	Najib Abusalbi
	Schlumberger

	Rusty Foreman
	BP

	Oivind Berggraf
	Statoil

	John James
	Schlumberger

	John Lin
	Schlumberger

	Bill Sanstrom
	Landmark

	Doug Seiler
	Halliburton

	John Shields
	Baker Hughes

	Melissa Symmonds
	Schlumberger

	V1.00
	Initial Draft
	4 Dec 2000
	John Shields

	V1.01
	Added Use Cases, Initial list of Objects and API methods
	6 Dec 2000
	John Shields

	V1.02
	Added heirarchy diagram of data objects
	11 Dec 2000
	John Shields

	V1.03
	Updated at meeting in Houston
	4 Jan 2001
	WITSML Team

	V1.04
	Updated after meeting in Houston on 26th Jan. New use cases. Tidied up list of business objects. Changed project name to WITSML.
	29 Jan 2001
	WITSML Team

	V1.05
	Update after meeting in Houston on 1st Feb. Added higher level Overview. Added object Structure granularity to section 4.3. Replaced usage of “record” terminology with “object” as appropriate. Add priority definitions.
	3 Feb 2001
	WITSML Team

	V1.06
	Update based on discussion from the 5th Feb video conference. Raised / added priorities for remote hand shaking and API.
	5 Feb 2001
	WITSML Team

2 Overview

E&P companies are now putting more focus on collaborative asset teamwork to speed and improve decision-making involved with developing oil and gas fields. To facilitate such collaboration, E&P companies are adopting shared, integrated, IT technology to enable multi-disciplinary teams to engage in improved workflow processes across all phases of the oil field life cycle. Much of the data needed to feed these workflow processes can be shared between Service Companies and E&P companies during the planning and execution phases of the wellbore construction process. The “right time” seamless flow of this data between operators and service companies will speed and enhance decision-making. For this to become viable, a new data exchange standard needs to be defined and adopted by the oil and gas industry. The goal of the WITSML initiative is to define, document, and promote the implementation of such a standard.

This document describes the functional requirements for the WITSML Data Exchange system. During the wellbore construction process, a number of different service companies provide data monitoring and acquisition services at the wellsite, collecting engineering data, geological data, well log data from LWD/MWD tools and daily reporting data. Oil company project groups have a need to analyze this data in a timely fashion using a variety of different processing software running on PC Windows and UNIX computers in widely distributed network environments.

The aim of the WITSML project is to provide an improved oil industry standard to enable data exchange between different service company and oil company software systems during planning and execution phases. The scope of the project is to cover the requirements of wellbore construction processes, initially focussing on drilling and later including completions, well servicing, well testing and well production monitoring. The standard will cover both the definition of standard data items and also the interfaces for access to the data items. WITSML is intended for the transfer of data in both real time and non real time modes.

The name WITSML was chosen to acknowledge evolution from the existing WITS standard but incorporating the modern data representation standard XML.

Where possible, existing and emerging industry standards should be acknowledged and incorporated, if appropriate.

2.1 Project Deliverables

· P1: Definition of Data Objects and catalogs

· P1: Example WITSML files

· P1: Validation tool for WITSML files

· P1: Example code to read and write simple WITSML data files

· P1: Documentation

· P1: Investigate remote hand shaking capabilities

· P2: Simple style sheets to allow formatted viewing of WITSML data files

· P2: Definition of API to request data objects

· P3: API tester

(Note: The priority of each requirement is specified with [P1], [P2], and [P3].

A [P1] priority item is one that is regarded as critical and essential to the successful commercial release of this version of the product. [HIGH]

A [P2] priority item is one that is regarded as important, but not critical product functionality for this release. [P2] priority items are, however, considered critical for the longer-term viability of the product. [MEDIUM]

A [P3] priority item is one that is regarded as a useful feature that would add value to this release, but does not constitute a necessary component. Items can also be designated [P3] if it has been agreed (independent of the critically) that the required functionality would not be in this release. Such requirements are included for completeness. [LOW]

Together, [P1] and [P2] items represent the core functionality required for this release. No requirement with a priority of [P1] or [P2] will be dropped from the schedule without review and agreement between members of the PDT. [P3] items will be implemented should there be sufficient time and resources available.)

2.2 Project Goals

· Prototype available in July 2001

· Commercial system available in Jan 2002

3 Use Cases

This section of the document describes the required behavior of the system as a set of discrete scenarios which the system should support.

3.1 Real Time Feed to Operators’ Data Bases

While drilling, real time data streams from rig site to data bases such as OpenWorks, DIMS, and GeoFrame. Operators use this data to update predictions about the subsurface and in turn make decisions while drilling. Operators purchase commercial software to communicate with WITSML servers and load the data into OpenWorks, DIMS, GeoFrame, etc.

3.2 Real Time Data Exchange Between Suppliers

Multiple suppliers of well site data (such as MWD, mud logging, directional, etc.) share data at the rig site. Each supplier uses the information to make more informed recommendations and the duplication of information is reduced. This enables a single supplier to aggregate the data for a given well and transmit a single WITSML stream to the operator.

E.g. Mudlogging company receives real-time data streams from rig instrumentation company and LWD company at the rig then makes the data available in WITSML format to the oil company.

E.g. (2) Real-time sensor data are transmitted to a Pore Pressure evaluation company who then returns calculated pressure parameters.

3.3 End User Accesses File of WITSML Data

Suppliers and operators all share information (such as well header, morning report, casing, cementing, etc.) to reduce duplication of data input and associated errors.

An end user of the system could be any consumer of oilfield information but is most likely to be a service company or oil company employee involved in the analysis of wellsite generated information. Files of WITSML data may be made available on any digital media or transmitted via e-mail. When a file is received it is read using a commonly available application such as a web browser or text editor

E.g. Morning report data file is e-mailed to oil company office in town and is viewed in a browser using a style sheet for formatting or the file of data can be imported into an application for further processing.

E.g. Update a well plan from the office to the wellsite.
3.4 End User Accesses WITSML Data File(s) on Web Server Hosting Willow Fork Data

User accesses web server at the wellsite and views WITSML data files via style sheets to provide formatted reports of drilling parameters, LWD data or reports.

3.5 User gets Real-Time Updates of Data from Rig

User sees real time data updates of bit depth and drilling parameters in a web browser or other viewer.

3.6 Software Program Accesses WITSML Server using API

An engineering program (e.g. pore pressure evaluation) continuously reads real time data from a WITSML server using API calls. The computed results are sent back to the WITSML server using API calls or the WITSML server computer requests the calculated results via API calls.

3.7 Software Program Reads and Writes WITSML Data File

Reservoir engineering software program imports data from a WITSML data file. Calculated results are exported as a WITSML data file.

3.8 Examples of Use Cases

[image: image1.jpg]e-mail,] Qil Co. Client

WITSML ok
Rig Sensors Sent —_— P
Transm? ellsite Service |

Company
0il Co. Client
wiTsML HITP: -
Network ¢ web
= /Transfer |1 Pages
Instrumentation WITSML Server <
Company T

API OpenWorks o
calls ™ " GeoFrame

Rig Site Office Location

This example shows a typical scenario where instrumentation companies at the rig provide raw data as WITSML streams on RS232 serial or TCP/IP network lines to a service company such as a mudllogging or MWD/LWD company. The service company acts as an accumulator of WITSML data at the rigsite and adds its own data from mudlogging or downhole tools. The service company updates data to a WITSML server and also transfers WITSML data to the oil company office using e-mail, FTP file transfer or floppy disk transfer. Engineers in the office can also view WITSML files using a web browser to browse the server at the rig. Applications such as OpenWorks and GeoFrame can use the WITSML API to extract data from the WITSML server.

[image: image2.jpg]Qil Co. Client

[

HTTP
Web
Pages
1

]] Serial or
Wellsite Service Network
Company link

Rig Site

-

WITSML Server

}

API Calls
or Files

'

OpenWorks or
GeoFrame

Office Location

In this example, the service company at the rig collects data from various sources and populates a WITSML server which is located in the oil company office. Office based engineers can then access the data using a web browser to view and download files. WITSML compliant applications can load WITSML data directly from the WITSML server using the API or can import and export WITSML files.

4 Functional Requirements

Here's the basic list of identified requirements. These are expanded in more detail below.

· Ability to transfer oilfield data from the wellbore construction phase between different software systems

· Standard definitions of oilfield data objects.

· Objects must be extensible

· Standard data modeling techniques

· Able to transfer data in real-time and batch mode

· Ease of implementation

· P2. Standard interfaces to remotely access WITSML data objects (API)

· Data layer independent of access layer

4.1 Transfer of data between different software systems

This is the basic requirement for the system, to transfer data representing oilfield business objects between different software packages running on different systems. Minimize the use of binary data formats to avoid platform dependence and to assist human readability.

WITSML data will be exchanged during the entire lifecycle of the wellbore from planning to abandonment.

Data objects will include information of the following types, with priority ratings:

· P1: General Well and Rig Information (rig details, well datum, well header…)

· P1: MWD/LWD logging of downhole parameters

· P1: Mudlogging data (drilling parameters, gas measurements, cuttings geology…)

· P1: Survey

· P1: Tubulars (BHA, casing…)

· P1: Daily Reporting (examples include: Bit Records, Tour sheet, Operations summary, Fluids, Costs…)

· P1: Rig Instrumentation Systems

· P1: Pressure Profile

· P2: Cementing, stimulation

· P2: HSE data

· P3: Wireline Logging (single value data curves only)(See Well Log Characterization Consortium)

It is a requirement of the WITSML project that these business objects be defined in a consistent and standard way.

4.2 Standard definitions of oilfield data objects

In order to transfer data objects between systems the data objects must be presented in a standard format or in a way which is self-describing. The file of WITSML data includes information on the origin of the data and meta data which gives information about the actual data contained in the file.

Some standards for data transfer have been established over the last 20 years but most of these are limited in scope and/or functionality. The best known of these are:

	Name
	Description

	WITS
	Wellsite Information Transfer Standard. A well established standard defining 25 different data records in simple ASCII and binary formats and the method for transferring the data on a point to point communications link using serial interfaces or TCP/IP networking. User defined records are also possible. Provides for multiple levels of sophistication defined by levels 0 through 3 of the transport protocol. Widely supported by service companies up to level 1. Inconsistent support for the higher, more complicated levels.

WITS level 4 has been proposed to address shortcomings in the other WITS levels, based on RP66 (DLIS) and allowing the ability to have self-defining records. Not currently published or implemented.

	LIS
	Standard file format for transfer of depth and time based log data defined by Schlumberger. Revised in 1990 with expanded capabilities. Well supported by well log processing software.

	LAS
	Log ASCII Standard. ASCII version of LIS defined by the Canadian Well Logging Society. Widely supported by processing software.

	DLIS
	A more sophisticated file format for log data allowing for multi-sample curves and log image data.

	WellLogML
	An XML based log data storage system proposed and maintained by POSC. Not currently implemented by data providers.

	DEX (Landmark)
	Provides a de facto standard defined as XML records for some of the engineering data types but is currently only supported by Landmark software and a number of other vendors such as Knowledge Systems

Most of these standards are concerned with defining records of depth or time based sequential log data. The WITS standard includes records for well header information, drill strings, casing strings and geological data but these are not widely used and do not allow the level of detail required by modern engineering analysis programs.

The WITS standard represents the closest match with the wellbore construction data which this project is concerned with.

4.2.1 WITS Background

WITS has been used for around 20 years to move pre-defined data objects from point to point via serial lines or TCP/IP network connections. It specifies 25 standard data records which handle time and depth sequential drilling and formation evaluation data as well as data which is not logged at intervals of time and depth such as drillstring and casing configuration, drilling fluid details, well and rig information and environmental data. Most service companies support the generation of WITS data records and also usually provide a WITS receiving station which can collect the data in an oil company office and provide access to it in the form of real time displays or logs. As well as defining the structure and content of the data objects, the WITS specification also provides a number of different ways of transferring the data from a sending system to a receiving system. The most commonly used WITS transmission system is WITS level 0 which transfers real time data values as simple ASCII data streams. These streams can contain any items from any of the WITS data records and do not have to contain whole records.

WITS records all contain a well and sidetrack identifier and these identifiers are used to relate data from the different WITS records.

The recognized limitations of the current WITS specification are:

· Outdated MWD data records

· Data is record driven, not object oriented

· Restrictions on number of drill string and casing sections

· Inflexibility for handling data in different units of measurement

· Limited capacity for handling static well information

· WITS records are extensible but not self-describing

· Use of binary data formats is not platform independent

4.3 Standard data modeling techniques

WITSML data objects are built up from a set of simple data objects. All of the object properties are defined in a schema.

A simple data object is made up of a name and a value and can have a set of measurement units associated with it. The value is either a number with associated unit types or an ASCII string or an ASCII string which is a member of a pre-defined list of valid values.

For example a drill bit could be built up from the following:

Atomic data objects. Definitions of the lowest level of data types.

	Object Name
	Type
	Unit
	Value

	A_DIAMETER
	FLOAT
	[in,mm,cm,m…]
	

	A_LENGTH
	FLOAT
	[m,ft…]
	

	A_BIT_TYPE
	LIST(Catalog)
	
	List of [PDC, Roller Cone...]

Drill Bit object. An object built up from a collection of atomic data types. This is the schema definition of a bit object

	Name
	Type

	Diameter
	A_DIAMETER

	Length
	A_LENGTH

	Type
	A_BIT_TYPE

	SerialNumber
	STRING

This is an instance of a bit object which contains the actual data values for that drill bit:

	Name
	Unit
	Value

	Diameter
	In
	8.5

	Length
	Ft
	1.723

	Type
	
	PDC

	SerialNumber
	
	ASD234GHF55

Complex objects can be built up from collections of atomic and other data objects. For example, a drill string can be built up as an array of TUBULAR_ELEMENT objects, where a TUBULAR_ELEMENT may be one of a list of defined drill string elements such as BIT, COLLAR, JAR, STABILIZER, DRILL PIPE etc.

The object structure will be hierarchical. Objects can be transmitted with minimal external referencing (eg. the well and/or the direct parent object)

The object structure must be granular enough to minimize the data required to transmit a value of interest. eg, it must be possible to update the pump liner sizes without transmitting the whole rig object, perhaps without transmitting a pump object, just a reference to it.

The schema will be used to verify that information in data records is valid and well-formed WITSML records.

The schema must be versioned and the version information must be referenced in the generated data files.

4.4 Data Schema and Objects Must Be Extensible

WITSML data objects can be added to the system without affecting existing data definitions or the API. It is also possible to extend existing data objects. Extensions may be added to the schema to enable sharing of the data object extensions between different companies. Sender and receiver must use the same schema to ensure that all items can be identified and decoded. Unidentified received data items will be ignored.

The WITSML committee approves proposals for extensions to the standard.

4.5 Transfer Data in Real-Time or non Real-Time

It should be possible to receive WITSML data as simple disk files as well as data streams via communications channels. In this way it will be possible at the end of a well or well section to deliver a set of data on any digital media.

For access to data from interactive systems it is also necessary to define a data access layer (API) which allows software to query a WITSML data server to discover its contents and extract sub-sets of data.

Data transmission must be able to handle intermittent sending with minimum overhead involved on re-connection.

4.6 Service Levels

Level 1: P1: Simple file exchange via floppy, e-mail, ftp, web server etc.

Level 2: P1: Data streams via serial port or TCP/IP network socket or other transport mechanisms.

Level 3: P2: Access for programs via API to retrieve WITSML data objects from different servers

4.7 Ease of Implementation

In order to be adopted as a standard, it must be easy using common current software tools for data providers to be able to implement WITSML send and receive functionality.

The core API can be considered as the center of the onion. Other layers may be wrapped around the core providing interfaces specific to a variety of software architecture and programming languages.

5 Constraints

5.1 Software Constraints

· Data should be able to be exchanged between different operating systems

· Access to WITSML data should not rely on the presence of any other proprietary software such as database systems.

· Policy Free – does not dictate a specific software architecture or paradigm

· Language Neutral – callable from modern and classic programming languages

· WITSML data objects will be represented in XML (eXtensible Markup Language) and defined using XML schemas

· Data transfer should work through firewalls

5.2 Hardware Constraints

· WITSML data should be accessible on any modern computing platform. These include Windows PCs, UNIX workstations and any web enabled devices capable of running web browser software.

5.3 Performance Constraints

· Data transfer should be as efficient as possible minimizing bandwidth utilization.

· The overall performance should be comparable to or better than the current WITS system.

5.4 Project Timing Constraints

· Prototype available in July 2001

· Commercial system available in Jan 2002

6 Suggestions

While not strictly a part of the Functional Requirements, a number of suggestions have been made about candidates for design and implementation of the system. These are outlined below:

· Use ASCII and/or UNICODE for platform and language independence

· Use XML as a way of defining the business objects

· Use Web servers as a way of providing access to the data. This should enable access from most hardware and software platforms.

· Use a published specification for querying and retrieving data from a data provider system. Candidates include XMLRPC/SOAP and JNI.

· Use existing oilfield standards such as WellLogML as a way of providing similar data in WITSML

· Submit standard to an existing standards body, such as API (PIDX), POSC, W3C (for namespace)

· There should be a committee formed to maintain the standard. (suggest WITS committee)

· POSC compatibility is a desired feature. If possible, make use of work already done in POSC in the WellLogML and other standards defined for drilling and completions activities.

· WITSML data can be made accessible to end users via a web server. The most basic level of access is simply to provide links allowing data files to be downloaded then they may be treated in the same way as described above. Additionally, the WITSML web server can also use formatting pages such as style sheets to format and enhance the presentation of the information in the WITSML data files.

· The WITSML web server may be accessed by software running on another (or the same) computer. In this case, the software will make calls to the WITSML web server computer to retrieve data. The structure of the calls will be compliant with the WITSML Applications Programming Interface (API). Data returned from the calls will consist of WITSML data objects. The WITSML data provider supplies software which implements part or all of the WITSML API.

· The WITSML data files will be a new standard in the oil industry so it is anticipated that developers of applications which support the WITSML standard will be able to load files of data generated by a WITSML data provider. This is similar to the current situation where petrophysical processing software can load data from the current industry standard files such as LIS and LAS.

· Explore the use of compression technique

7 Appendix A - Standard Data Objects (Examples)

The WITSML system defines a set of standard objects which describe real world oilfield objects. These objects form the content of WITSML data files and are returned from calls to the WITSML API. Objects may contain data items which are other objects. The requirements for the objects detailed below is based on current systems such as DART and WITS and a knowledge of the requirements of current drilling engineering processing applications.

The data objects can be though of in a hierarchy looking something like this:

[image: image3.png]Wellbore

All objects below this line hang off the Wellbore object

Tubular Run
=]

Survey

LEI

Standard
Logs

7.1 Data Objects

The following is a proposal for WITSML data objects:

	Name
	Description

	Well
	Information about a well including its name, datums and location

	Wellbore
	Wellbore or sidetrack information, including kick-off point

	SurveyHeader
	Directional survey header with information about the type of survey run

	SurveyData
	Data points from a directional survey including inclination, azimuth and toolface

	DefinitiveSurveyData
	Calculated data points from a directional survey including vertical depth, N-S and E-W positions

	LogHeader
	Information about the contents of a log, which is a collection of traces

	LogData
	Data points from a log. Contains one or more data items at intervals of depth and/or time. A set of pre-defined LogData records are used to store the sequential data records which were used in the WITS specification.

	BitRecord
	Information about a bit run, corresponds to the API bit record.

	CasingScheme
	Complete casing scheme information including string section propertied, connections, and landing information

	CasingSeats
	Simplified casing scheme

	Cement
	Complete cement job, stage, slurry, and additive information

	DrillingFluids
	Drilling fluids rheology, sufficient to produce an API Mud Report

	DailyOperations
	Daily Operations information, sufficient to provide an API daily report.

	TubularString
	Typically a drill string including BHA, other components and operations data

	PressureGradients
	Pore, Fracture Pressure gradients

	DrillingTarget
	Drilling Target description

	WellPath
	Well path plan

	FormationTops
	Geological formation depths and information

	Perforations
	Record of perforating run

	Temperature
	Wellbore temperature data

	Packer
	Information about packer placements

8 Appendix B – Suggestions for the Applications Programming Interface (API)

The lowest level API for accessing data, assuming a file metaphor discussed in prior meetings, should be as “open and simple” as possible. What does open and simple mean?

· Extensible - new data objects and existing data object extensions can be made without changing the root API

· Policy Free – does not dictate a specific software architecture or paradigm

· Language Neutral – callable from modern and classic programming languages

· Minimize the number of API calls to interact with WITSML Data

· Self Verifying – verifies WITSML objects are well formed

The core API can be considered as the center of the onion. Other layers may be wrapped around the core providing interfaces specific to a variety of software architecture and programming languages. It is suggested that the WITSML Team focus on the core API for the time being.

Proposed core API

The core API is segmented into 3 parts:

· Root Level functions. For example attach to and open/close a data store

· Object Level functions. E.g. read and write WITSML objects and their properties

· Utility functions. E.g. formatting and list navigation functions.

The content and detail of the API will be defined by the WITSML technical team.

9 Appendix C – Catalogs (Examples)

In order to report information in standard ways, WITSML could define a number of catalogs which provide unique definitions of various types of items. Many of the catalogs are derived from existing industry standard sources including POSC, WITS and the NPD. For implementation within WITSML, these catalogs may be incorporated into the schema which describes the available data objects.

· Data Dictionary - In order to identify the data within WITSML, each of the "standard" data items must be uniquely identified. The Data Dictionary is a catalog of all of the data items which are found in the pre-defined WITSML data objects and standard Logs. Note that some data items may have the same names in different objects. In order to uniquely identify an item it is necessary to specify the object and item name. For example NAME from the Well object would be identified as WELL.NAME to distinguish it from TUBULARRUN.NAME. Normally this would not be an issue as the data item would only appear in the context of its object. In the case of real-time data, as in the current WITS level 0 transmission, it will be necessary to indicate the log name from which the data is to be obtained. For example, LOG.DRILL_DEPTH.ROPA would indicate the depth averaged drill rate from the drilling depth based log whereas LOG.GEN_TIME.ROPA would be the time averaged drill rate from the general time-based log. For efficiency, it may be worth looking at abbreviating the standard log names to two characters so that the above examples would become LOG.DD.ROPA and LOG.GT.ROPA. It may also be necessary, as in WITS, to define an additional 4 character mnemonic for backward compatibility with the LIS file specification. For data from MWD/LWD logs, standard dictionaries already exist in POSC and these names should be used.

· Drill String Elements - DRILL_PIPE, HEAVY_WEIGHT_DRILL_PIPE, COLLAR, MONEL, STABILIZER, JAR, CROSSOVER, MWD_TOOL, THRUSTER, JUNK_BASKET, ROLLER_CONE_BIT, PDC_BIT, DIAMOND_BIT, CORE_BIT and many more...

· Hole/Casing Types - RISER, CONDUCTOR, CASING, LINER, OPEN_HOLE

· Drilling Fluid Types - WATER_BASE, OIL_BASE, SYNTHETIC

· Rig Types - LAND, JACK_UP, BARGE, SEMI_SUBMERSIBLE, PLATFORM, TLP, WORKOVER

· Formation Fluid Types - FRESH_WATER, SALT_WATER

· Elevation Datum Types - Describes the elevatiion of the wellhead reference point. Based on the POSC classifications. DRILLING_FLOOR, GROUND_LEVEL, KELLY_BUSHING, MEAN_SEA_LEVEL, ROTARY_TABLE.

· Well Types - Uses the POSC Epicenter definitions: WILDCAT, NEW-FIELD_WILDCAT, NEW-POOL_WILDCAT, SHALLOWER-POOL_WILDCAT, DEEPER-POOL_WILDCAT, OUTPOST_WILDCAT, STRATIGRAPHIC_TEST, DELINEATION, APPRAISAL, DEVELOPMENT etc.

· Rig Activity Codes - Based on existing WITS or possibly POSC WIME codes.

· Coordinate System - LOCAL = relative to wellhead, PROJECTED = UTM or similar projection, GEOGRAPHIC = Latitude/Longitude

· Survey Status - PLANNED, RAW, PRELIMINARY, MEMORY, FINAL

· Survey Tool Types - MAGNETIC, GYRO, INERTIAL

· Data Classification Types - This should follow the POSC definitions for different types of data measurements e.g. GAMMA, RESISTIVITY, LIMESTONE_DENSITY, POROSITY, AUXILIARY etc.

· Lithology Types - Based on Norwegian Petroleum Directorate (NPD) Types.

· Well Status types - Based on the POSC types. ABANDONED, ACTIVE, DRILLING, DRILLING_SUSPENDED, PARTIALLY_PLUGGED, PERMITTED, PLUGGED, PLUGGED_AND_ABANDONED, PROPOSED, STATUS_UNKNOWN, SUSPENDED, TEMPORARILY_ABANDONED, WIPING.

· Tubular Run Reasons - The reason for running tubulars into the hole: DRILLING, DIRECTIONAL_DRILLING, FISHING, CONDITION_MUD, TUBING_CONVEYED_LOGGING

· Tubular Pulling Reasons - The reason for removing a tubular string from the hole: COMPLETED_DRILLED_SECTION, CHANGE_BIT, WASHOUT, DOWNHOLE_TOOL_FAILURE, PRESSURE_PROBLEMS

· Wellbore Types - From the POSC definitions: INITIAL, RE-SPUD, REMEDIAL_SIDETRACK, SIDETRACK,

· Other Possible Catalogs - In order to provide consistent definitions of data items it is also possible to define catalogs for many other data types which are normally represented as free form character strings, e.g. Field Names, Company Names, Country Names

1
14

